A SOLUTION OF DIRECT AND CONVERSE TWO-DIMENSIONAL
PROBLEMS OF NONSTATIONARY HEAT CONDUCTION WITH
VARIABLE BOUNDARY CONDITIONS USING THE METHOD

OF TRANSFER FUNCTIONS

B. I. Strikitsa UDC 536.2

A procedure is developed for determining transfer functions and by employing them to solve
direct and converse two-dimensional problems of nonstationary heat conduction with vari-
able boundary conditions for a hollow cylinder.

The proposed procedure for solving direct or converse problems of nonstationary heat conduction
for a hollow cylinder is a continuation of the procedure developed in [1]. In the above cited article the
system ot algebraic equations (3) is analogous to the equation
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where dgt(r, @, @) is the unit response function representing the response of the cylinder in the form of
temperature distribution to a consecutive incidence at each point of the outer surface of the cylinder r =R,
of a heat flux density q(R,, ®) = 1(@) if on the inner cylinder surface r = Ry the temperature s®R;, ®, 0} =0
is maintained. The temperature of the inner cylinder surface t; is adopted as the origin of the scale and the
notation is introduced 4 =t — t,.

The solution of direct and converse problems of nonstationary heat conduction for a hollow cylinder
with boundary conditions of the second kind forr = R,and of the first kind for r = R, is represented in the
form of an equation similar to Eq. (1). The direct problem is formulated as follows.

The initial condition is given in the form of a stationary temperature distribution which can be ex-
pressed by Eq. (1). At the instant 7 = 0 the outer surface of the cylinder begins to be subjected to the heat
flux of density q(R,, ®, 7) which is varying in time as well as on the circumference; the temperature of the
inner surface varies according to a given law n (®, 7). It is required to determine the temperature dis-
tribution in the cylinder at any time instant.

One has: ‘
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together with Eq. (1).
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Five auxiliary problems are considered for the differential equation (2) with boundary conditions '
which are parts of the conditions (1), (3), and (4). The first problem is given by Egs. (1) and (2) together
with the conditions

00 (R, O, 1) ~0, (5)
on
¥R, ©, 1)=0; (6)
the second problem is given by (2) and (6) and the conditions:
$(r, 9, 0) =0, )
o d¥(R,, 9, 1) + gt (Ry, 8) =0 (8}
on A

the third problem is given by (2), (5), and (7) and the condition
(R, 8, 1) =10 (R,, O, 0); )

the fourth problem is given by (2), (6), and (7) and the condition
__08(R, 0, 7) . g{Ry, 0, 1) —gsi (Ry, ©O)

=0 10
on A 10

the fifth problem is given by (2), (5), and (7) and the condition
F(R, O, 1) =1(0, 1)—T(R,, 9, 0). (11)

In accordance with the superposition principle which is valid for linear problems the solution of the
problem (1)-(4) can be represented as a sum of the solutions of five auxiliary problems. Let the solution
of the problem (1), (2), (5), and (6} with qg;(R,, @) = 1(®) be a function &pH(r ®, o, 1), the solution of

the problem (2), (6), (7), and (8) for qstR,, @) = 1(®) be a function, 19H2(r ®, ¢, 1), and of the problem
2), (5),(7), and (9) for $®R,, ®, 0) = 1(@) a function &I“(r 0, ¢, 7). Then using the Duhamel integral the
solution of the original problem (1)-4) can be wr1tten as
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By using the equality
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Eg. (12) can be replaced by
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The function 1919 H(r, ®, @, 1) is called by us a relaxation unit-
response function, 15‘?1(1“, ®, ¢, 1) is called the first fundamental
unit-response function and &{I 4r, ®, ¢, 7) the second fundamental
unit-response function. A converse problem can also be solved by
employing these functions, The converse problem can be formulated
as follows.

Temperature distributions in the cylinder are given for r
=R, and also on some other fixed radius for any time: n(®, 7) and
d(rg, ®, 7). The initial condition is represented by Eq. (1). Itis
required to determine the density distribution of the heat flow for
r =R,.

The given temperature distributions are substituted in Eq.
(14); then the solution of the converse problem can be written as
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Fig. 1. Two~dimensional grid mod- T2
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Equation (15) represents a mixed Fredholm —Volterra integral equation of the first kind with respect
to the unknown qR,, @, 7). '

The unit-response functions were determined with the aid of an electric model by using the integrator
EGDA. These functions were found for a cylinder one of whose diameter planes is the symmetry plane for
the temperature field. A two-dimensional network model was therefore constructed of a half of a hollow
cylinder, as shown in Fig. 1. The method employed to determine these functions is identical with that for
determining the functions & in [1]. A potential equal to 100% is applied to the additional resistance Ryaq.
The resistance Radq 1s connected consecutively to all nodes on the outer circumference of the model. The
potential equal to 0% is applied to all nodes of the inner circumierence. The resistances R; are discon-
nected. The potentials Ugt(rk, ©4, ¢j) are now measured on all nodes of the model. In the above we have
k=1,2,8,...,7%i=1,2,3,...,m;j=1,2,3,...,m=n. The value of the current Iy applied conse-
cutively to the nodes of the model outer circumference is determined after the voltage drop on the resis-
tance R, qq. The values of the stationary unit response function are found as the ratio of the quantities
Ugt (rk. ©i, @j) and IB(@1)

T (re On @) = Uy (r O1 93)/1,(0)). (16)

We shall now find the relaxation unit-response function. To this end potentials are applied to the
nodes of the model inner circumference the potentials remaining equal to 0% in the course of the solution.
In accordance with [2] to the time resistances R, the potentials Ugt(rk, @4, (pj) are applied at the first time
instant. No inputs are sent through Rydd to the model. The potentials UH1 (ri, 5, 95, TN) are now mea-
sured onall nodes. Intheabove N =1, 2,3, ..., « The value of the relaxation unit-response function
is found as the ratio of the quantities UgI (rk, ®, @j, 7y) and Ig@;), the latter being found when determining
(I’]g%:(rks ®1’ @J)

DI (ry, O3 @y ) =UL (B4, 05 )1, (0)) (17)

The first fundamental unit-response function is now determined. To this end the potential Ug/c
is applied consecutively to the nodes of the model inner circumference and the potential Ug/c is kept con-
stant in the course of the solution. In the above c is a parameter. On R, the potentials equal to 0% are ap-
plied at the first instant. No disturbancesare sent to the model through R, 34. The potentials Ufll(rk, @,
@55 TN) 8re now measured at the nodes. The values of the first fundamental unit-response function are
found as the ratio of the quantities UHi(rk, 85, @35 TN) and UB(®i)/c,

DU (r,, O, @5 ) =Ulr, 0, g, ) c/U,(0)). {18)
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The second fundamental unit-response function is now found. To the nodes of the model outer cir-
cumference a current of magnitude Iy/ c is applied through Rygq and remains constant during the course
of the solution. Potentials are applied to the model inner circumference and are maintained in the course
of the solution as equal to 0%. To R, potentials equal to 0% are applied at the first instant. The potentials
UII (ry, ®1, @3, Ty) are measured at the nodes. The values of the second fundamental unit-response func-
t10n are found as the ratio of U (rk, 04, @55 TN) and IB(®1)/ c,

(P” Hry, Oy P Ty) = UI”(r,i, 0, ®; Ta)c/l,(0)). (19)

The parameter c is introduced if one finds that for some instant one should change the potential Up
or the current Ig ¢ times. Then the potentials UH1(rk, ®, @ g% TN and U (rk, @i, @i, TN) obtained at the
preceding instant and supplied to R+ must be changed c times, correspondlngly

Relations will be established between the unit-response functions expressed in electrical units and the
unit-responsefunctions expressed in thermal units. Following [1] it is easily shown that these relations
are as follows:

B, 04 @ )l =P (e ©4 9 ), (20)
f}H (rh’ i (P]! TN)Z~¢112(rIz’ Ozr (PJ» TN) (21)
i, O @) ) =DM (r, O, ¢, ). (22)
In the above
1 == Crm*|Be, (23)

where Cp is the resistance scale; m* is the scale of the model; Bg is the length of the portion of the model
outer circumference through which the input is applied to the model when unit-response functions are de-
termined. By using the relations (20), (21), and (22) and following [3] Egs. (14) and (15) are represented
in the form of a system of algebraic equations. Thus the solution of the direct problem of nonstationary
heat conduction with boundary conditions of the second kind for r =R, and for the first kind for r = R, takes
the form of an analog of Eq. (14):
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The solution of the converse problem is analogous to Eq. (15). The obtained equation differs from
Eq. (24) in that the sought function q(R;, ®j, TN) appears within the summation signs. It can easily be shown
that this equation can be given by
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The expression (25) represents a linear system of algebraic equations with a given right-hand side at
the time instant under consideration. Since for any time instant the right-hand side assumes different val-
ues and the left-hand side remains unchanged it is therefore expedient to find the matrix A II2» the inverse
of the square matrix consisting of the coefficients rIJIIz(rkq,, ®4, @i, 1) of the system (25). The sought
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solution is then found in the form
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Equations (24) and (26) can be solved iteratively starting from the instant 7 = 0.

The solutions obtained by employing this procedure are identical with the results obtained by using
an electrical model ([2] and [4]) and have an error up to 1.5%.

NOTATION
r is the current radius of cylinder;
Ry is the inner radius of cylinder;
R, is the outer radius of cylinder;
® and ¢ are the central angles between 0 and 27;
t is the temperature, °C;
ty is the temperature of the inner surface of the cylinder for the steady-state problem, °C;

4

q is the density of the heat flux, W/m?
T is the time;

U is the potential, %;

I is the current, A.
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