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A p r o c e d u r e  i s  d e v e l o p e d  fo r  d e t e r m i n i n g  t r a n s f e r  func t ions  and by e m p l o y i n g  t h e m  to s o l v e  
d i r e c t  and c o n v e r s e  t w o - d i m e n s i o n a l  p r o b l e m s  of n o n s t a t i o n a r y  hea t  conduc t ion  wi th  v a r i -  
a b l e  b o u n d a r y  cond i t i ons  fo r  a hol low c y l i n d e r .  

The  p r o p o s e d  p r o c e d u r e  fo r  s o l v i n g  d i r e c t  o r  c o n v e r s e  p r o b l e m s  of n o n s t a t i o n a r y  hea t  conduc t ion  
fo r  a hol low c y l i n d e r  i s  a con t inua t ion  of the  p r o c e d u r e  d e v e l o p e d  in [1]. In the  a b o v e  c i t ed  a r t i c l e  the  
s y s t e m  ot a l g e b r a i c  equa t ions  (3) i s  a n a l o g o u s  to the  equa t ion  

2~ 

0 (r, (9, O)= j' ~9~s t (r, (-), ~)qst(R2, r 
o 

R~<r<R~ ;  0 < O < 2 ~ ;  0<q~<2n ,  
(i) 

w h e r e  $1s t ( r ,  @, (p) is  the  uni t  r e s p o n s e  func t ion  r e p r e s e n t i n g  the  r e s p o n s e  of the  c y l i n d e r  in the  f o r m  of 
t e m p e r a t u r e  d i s t r i b u t i o n  to a c o n s e c u t i v e  i n c i d e n c e  a t  e ach  point  of the  o u t e r  s u r f a c e  of the  c y l i n d e r  r = R 2 
of a hea t  f lux  d e n s i t y  q(R2, | = 1(@) if  on the  i n n e r  c y l i n d e r  s u r f a c e  r = R 1 the  t e m p e r a t u r e  $(R1, | 0) = 0 
i s  m a i n t a i n e d .  The  t e m p e r a t u r e  of the  i n n e r  c y l i n d e r  s u r f a c e  t o i s  adop ted  a s  the  o r i g i n  of the  s c a l e  and the  
no t a t i on  i s  i n t r o d u c e d  $ - t - t 0. 

The  s o l u t i o n  of d i r e c t  and c o n v e r s e  p r o b l e m s  of n o n s t a t i o n a r y  hea t  conduc t ion  fo r  a hol low c y l i n d e r  
wi th  b o u n d a r y  cond i t ions  of the  s econd  kind f o r  r - R 2 and of the  f i r s t  kind fo r  r = R 1 i s  r e p r e s e n t e d  in the  
f o r m  of an  equa t ion  s i m i l a r  to Eq. (1). The  d i r e c t  p r o b l e m  i s  f o r m u l a t e d  a s  fo l lows .  

The  i n i t i a l  cond i t i on  i s  g iven  in  the  f o r m  of a s t a t i o n a r y  t e m p e r a t u r e  d i s t r i b u t i o n  which  can be  e x -  
p r e s s e d  by  Eq. (1). A t  the  i n s t a n t  T = 0 the  o u t e r  s u r f a c e  of the  c y l i n d e r  b e g i n s  to be  s u b j e c t e d  to the  hea t  
f lux  of d e n s i t y  q(R2, | T) w h i c h  i s  v a r y i n g  in  t i m e  a s  we l l  a s  on the  c i r c u m f e r e n c e ;  the  t e m p e r a t u r e  of the  
i n n e r  s u r f a c e  v a r i e s  a c c o r d i n g  to a g iven  l aw V (@, ~-). I t  is  r e q u i r e d  to d e t e r m i n e  the  t e m p e r a t u r e  d i s -  
t r i b u t i o n  in  t he  c y l i n d e r  a t  any  t i m e  in s t an t .  

One has :  

O~,(r, G, ~)c~.c - -a [  O'~9(r' (:)' " O a r  2 -~- rI c)~(r, O, ~ ) 8 f  ~ r 21 0e~(r' C:;' ~) ] ( ~ > 0 ) ' a O  m --' (2) 

ae(R=, o, T) 4- q(R2, O, ~) O, (3) 
On L 

( R .  O, ~) = ~1 (0 ,  T) (4) 

t o g e t h e r  wi th  Eq. (1). 
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Five at txil iary problems a r e  considered for the differential  equation (2) with boundary conditions 
which a re  par ts  of the conditions (1), (3), and (4). The f i r s t  problem is given by Eqs. (1) and (2) together  
with the conditions 

a~(G,  O, ~) = 0, (5) 
8n 

~ ( G ,  o, 0 = o; (6) 

the second problem is given by (2) and (6) and the conditions: 

~(r, O, 0 ) =  0, 

&~ O, ~) + qst (R~, @) 
On ~. 

--  0; 

(7) 

is) 

the third problem is given by (2), (5), and (7) and the condition 

0'(Rp O, T)= ~ (R> O, 0); (9) 

the fourth problem is given by (2), (6), and (7) and the condition 

O~(R2, O, "0 q_ q(R> O, ~) - -qs t  (Ra, O) = 0 ;  (10) 
an 

the fifth problem is given by (2), (5), and (7) and the condition 

e (G,  o, ,~) = n (o, 1:) - -  ~ (G,  o, o), (11) 

In accordance  with the superposi t ion principle which is valid for  l inear  problems the solution of the 
problem (1)-(4) can be represen ted  as a sum of the solutions of five auxi l iary  problems.  Let  the solution 
of the problem (1), (2), (5) and (6) with qst(R2, | = 1(@) be a func t iondpl I ( r ,  | ~, r) , the solution of 

' I 
the problem (2), (6), (7), and (8) for  qst(R2, @) = 1(| be a function, d}I2(r, | 99, r), and of the problem 
(2), (5),(7), and (9) for  d(R2, | 0) = 1(| a function d~II(r, 0 ,  ~, r). Then using the Duhamel integral  the 
solution of the original problem (1)-(4) can be wri t ten as 

2a 
O(r, (9, ~)-- i' ~fII(  r, O, % ~)qst(Rv ~)dq~ 

2g 2~ 
+ (~7~(~, o, ~, ~)q~ (R~, ~)d~ + .i' ~I~(~, O, (p,~)~(~, ~o, O)d(~ 

+ -[q (G,  ~, ~) - qc~ (G,  ,p)) ~ -  
0 0 

"~ 2zl 

0 0 

By using the equality 

2g% -~ 2lI 

0 0 0 

% (/?2, ~) O ~  ~(2/(r, ~, 

Eq. (12) can be replaced by 

oo 

X 0 7 01I 2( F, O, (p, T, - -  ~) d(pd~ ~- J '  t (  1] ((p, ~) a T . o ~ l  I (/-, o ,  (p, T - -  ~)d(Dd ~. 

o o 

(14) 
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Fig. I. Two-dimensional grid mod- 

el of a half of a hollow cylinder. 

The function dpII(r, @, (0, ~) is called by us a relaxation unit- 

response function, d~Ii(r, | qo, ~-) is called the first fundamental 

unit-response function and d[ 12(r, | (p, ~-) the second fundamental 

unit-response function. A converse problem can also be solved by 

employing these functions. The converse problem can be formulated 

as follows. 

Temperature distributions in the cylinder are given for r 

= R I and also on some other fixed radius for any time: ~(| ~-) and 

d(r/i~, | r). The initial condition is represented by Eq. (i). It is 

required to determine the density distribution of the heat flow for 

r = R  2. 

The g iven  t e m p e r a t u r e  d i s t r ibu t ions  a r e  subst i tu ted in Eq. 
(14); then the solut ion of the c o n v e r s e  p rob l em can be wr i t t en  as  

2~ T 2.~ 

(r~, 0, ~)----- (OfU(r~,, @, % T) qst(R~_, (p) dq)+.!'.!' 
o| 

• % ~) Or i (r,, O, % T--~)dTd ~ 

z 2g  

+ n(% ~) ~[~(r,, 0, % ~ - -~ )@~.  (~s) 

0 0 

Equation (15) represents a mixed Fredholm-Volterra integral equation of the first kind with respect 

to the unknown q(R2, | ~-). 

The unit-response functions were determined with the aid of an electric model by using the integrator 

EGDA. These functions were found for a cylinder one of whose diameter planes is the symmetry plane for 

the temperature field. A two-dimensional network model was therefore constructed of a half of a hollow 

cylinder, as shown in Fig. I. The method employed to determine these functions is identical with that for 

determining the functions 4s in [I]. A potential equal to 100% is applied to the additional resistance Rad d. 

The resistance Radd is connected consecutively to all nodes on the outer circumference of the model. The 

potential equal to 0% is applied to all nodes of the inner circumference. The resistances R~- are discon- 

nected. The potentials Ust(rk, | ~j) are now measured on all nodes of the model. In the above we have 
k= i, 2, 3, . . . , 7; i = i, 2, 3, . . . , m; j = 1, 2, 3, . . . , m =n. The value of the current I Bapplied conse- 

cutively to the nodes of the model outer circumference is determined after the voltage drop on the resis- 

tance Rad d. The values of the stationary unit response function are found as the ratio of the quantities 

Ust(rk, | ~j) and IB(| 

~Ts~I(rk, (-)i, q~])= Ust (rt~, @~, ~])/I~(@~). (16) 

We shal l  now find the r e l axa t ion  u n i t - r e s p o n s e  function.  To this  end potent ia ls  a r e  applied to the 
nodes  of the  mode l  inner  c i r c u m f e r e n c e  the potent ia ls  r e m a i n i n g  equal to 0% in the c o u r s e  of the solution.  
In a c c o r d a n c e  with [2] to the t i m e  r e s i s t a n c e s  R r  the potent ia ls  Ust(rk ,  @i, ej) a r e  applied at the f i r s t  t ime  
instant .  No inputs a r e  sent  t h rough  Radd to the model .  The potent ia ls  U ~ ( r  k, | ~j, rN) a r e  now m e a -  
sured  |  nodes .  In the above  N = 1, 2, 3, . . . , ~. The value  of the r e l axa t ion  u n i t - r e s p o n s e  funct ion 
is found as  the r a t i o  of the quant i t ies  UI I ( rk ,  | e j ,  ~'N) and IB(| , the l a t t e r  being found when d e t e r m i n i n g  
~IIt(rk, | ~oj): 

d)II(ri~, 0~, ~.j, L~.:)--USI(0~, @i, %, ~N)//B(O~) �9 (17) 
- p ,  - -  pl 

The f i r s t  fundamenta l  u n i t - r e s p o n s e  funct ion is now de te rmined .  To this  end the potent ial  U B / c  
is applied consecu t ive ly  to the nodes  of the mode l  inner  c i r c u m f e r e n c e  and the potent ial  U B / c  is kept con-  
s tant  in the c o u r s e  of the solution.  In the above  e is a p a r a m e t e r .  On R~- the potent ia ls  equal to 0% a r e  ap -  
plied at the f i r s t  instant .  No d i s t u r b a n c e s  a r e  sent  to the mode l  th rough  Rad d. The  potent ia ls  U[I t ( rk ,  | 
ej ,  rN) a r e  now m e a s u r e d  at  the nodes.  The va lues  of the f i r s t  fundamenta l  u n i t - r e s p o n s e  funct ion a r e  
found as  the ra t io  of the quant i t ies  UI I t ( rk ,  | ~j, "rN) and U B ( |  , 

~]i,(q,, | %, ~::,)=U~I~(%, 0~, %, %v)c/U~(@i). (lS) 
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The second fundamental un i t - response  function is now found. To the nodes of the model outer c i r -  
cumference  a cur ren t  of magnitude I B / c  is applied through Radd and remains  constant during the course  
of the solution. Potentials  a re  applied to the model inner c i r cumfe rence  and a re  maintained in the course  
of the solution as equal to 0~. To R~- potentials equal to 0% a r e  applied at the f i r s t  instant. The potentials 

U~I: (arrke ~oi,u[2,a :N)h2;:t~oe:fUu[}d ( ; tk t? i  ?;dj?S~N) andThe IB(| of the second fundamental un i t - response  func- 

(/5I[ 2(rfi,  O i  ' q)j, T . , V ) =  U f I 2 ( r h ,  0 i ,  (pj, %Oc/IB(Oi). (19) 

The pa rame te r  c is introduced if one finds that for  some instant one should change the potential U B 
or the cur ren t  I B c t imes.  Then the potentials U{II(rk, Oi, ~j, rN) and UfI2(rk, | (;j, 7N) obtained at the 
preceding instant and supplied to R7 must  be changed c t imes,  correspondingly.  

Relations will be established between the uni t - response  functions expressed  in e lec t r ica l  units and the 
uni t - responsefunct ions  expressed  in the rmal  units. Following [1] it is easi ly shown that these relat ions 
a r e  as follows: 

~f~(r~,, O~, (p~, ~.)l  =q~ii (r~, 0~, (~, ~N), (20) pl 

~I~2(r,~, o~, %, ~)~=r o~, +~, ~), (21) 

0~z~(%, Oi, %., ~ )  = q~]~l(G , Oi, (p2, %@ (22) 

In the above 
l := CRrn*/Be, (23) 

where  C R is the r e s i s t ance  scale;  m* is the scale  of the model; B e is the length of the portion of the model 
outer c i r cumfe rence  through which the input is applied to the model when un i t - response  functions a r e  de-  
termined.  By using the re la t ions  (20), (21), and (22) and following [3] Eqs. (14) and (15) a re  represen ted  
in the fo rm of a sys tem of a lgebraic  equations. Thus the solution of the d i rec t  problem of nonstat ionary 
heat conduction with boundary conditions of the second kind for r = R 2 and for the f i r s t  kind for r = R 1 takes 
the fo rm of an analog of Eq. (14): 

~ q ~ I I  (G, Oi, ~N)qst(R.2, %) 
1 

N _'L. 1 

z=l  /= l  

AT tl 

-+ ~ [ ~ b [ I I ( % ,  Oi, q~j, %~-~+1)--r (9i, %, %v--~)]~](%, ~)- (24) 
z=l  j--1 

The solution of the converse problem is analogous to Eq. (15). The obtained equation differs from 
Eq. (24) in that the sought function q(R2, | TN) appears within the summation signs. It can easily be shown 
that this equation can be given by 

n 

~qb~r2(rT~(1),  O i ,  q)j, T 1 ) q ( R 2  , q)j, ~N) =l~(rhr Oi, ~r) 
1=1 

n N--I n 

j--I  ~=~ /=1 

- -  - I ~ h~o,  ( P i '  

z~l ]=i 

_ ~:[i, (rhea,, 0~, ~j, ~ - z ) ]  ~ (%, T~). (25) 

The express ion  (25) r ep r e sen t s  a l inear  sys tem of a lgebra ic  equations with a given r ight-hand side at 
the t ime instant under considerat ion.  Since for any t ime instant the right-hand side assumes  different  va l -  

-1 the inverse  ues and the left-hand side remains  unchanged it is t he re fo re  expedient to find the mat r ix  AII2, 
of the square  mat r ix  consist ing of the coefficients  ~ I2( rkO , @i, ~i, ~'t) of the sys tem {25). The sought 
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solution is then found in the form 
n 

q (R2, 0~, T~v) = A~I 2 {le (rt~,, 0~, ~N) - -  ~ q)II (rl,,, Of, %, ~v)qst(R2, %) 

N--1 n 

z = l  j ~ l  

N a 

---l~'~@IIIIr Oi, ~N--~+~)--CD~ ~ Z_~L ~ t h , ,  %, (%| 0~, %-, ~,v-~)] q (%, ~)}. 
z = l / ' = 1  

Equa t ions  (24) and (26) can  be so lved  i t e r a t i v e l y  s t a r t i n g  f r o m  the  i n s t a n t  r = 0. 

The  s o l u t i o n s  ob ta ined  by  e m p l o y i n g  th i s  p r o c e d u r e  a r e  i d e n t i c a l  wi th  the  r e s u l t s  ob ta ined  by us ing  
an  e l e c t r i c a l  m o d e l  ([2] and [4]) and have  an  e r r o r  up to 1,5%. 

(26) 

r 

RI 

R 2 
@ and c9 
t 

to 
$ = t - t 0 , ~  
q 
5" 

U 
I 

NOTATION 

is the current radius of cylinder; 
is the inner radius of cylinder; 
is the outer radius of cylinder; 
are the central angles between 0 and 2~; 
is the temperature, ~ 
is the temperature of the inner surface of the cylinder for the steady-state problem, ~ 

is the density of the heat flux, W/m2; 
is the time; 
is the potential, %; 
is the current, A. 

1. 

2. 
3. 

4. 
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